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Abstract—The concern for privacy and scalability has mo-
tivated a paradigm shift to decentralized energy management
methods in microgrids. The absence of a central authority
brings significant challenges to promote trusted collaboration
and avoid collusion. To address these issues, this paper pro-
poses a blockchain-empowered microgrid energy management
framework, which adopts a novel consensus-based algorithm
with a collusion prevention mechanism. Aiming at social welfare
maximization, the energy management problem is formulated
into a convex and decomposable form, which can be solved
in a decentralized manner. To prevent the collusion between
malicious agents, we propose a random information transmission
mechanism empowered by the blockchain smart contract to re-
place the time-invariant communication topology. The consensus-
based algorithm is extended to obtain the optimal solution of
the energy management problem on the random and time-
varying communication topology. We theoretically proved that
the proposed algorithm converges to the global optimal solution
with a probability of 1, without violating the physical constraints
of individual agents. The effectiveness of the proposed method
was validated by multiple experiments, both within the simulation
environment and on a hardware system.

Index Terms—blockchain-based optimization, consensus algo-
rithm, decentralized energy management, time-varying digraph.

NOMENCLATURE

Indexes

i Index of agents.
k Index of iterations.

Sets

I Set of all agents in the microgrid.
IL Set of flexible loads.
IG Set of dispatchable generators.
IR Set of renewable energy sources.
N−

i Set of out-neighbors of agent i.
N+

i Set of in-neighbors of agent i.
V Set of nodes in the graph.
E Set of activated links.
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Variables

λ Lagrangian dual variable.
λi Price estimation of agent i.
ζ Global power mismatch.
ζi Local power mismatch estimation of agent i.
Pi Power generation/consumption of agent i.

Parameters

δk Euclidean distance to the global optimum at itera-
tion k.

η Step size of updating the dual variable.
ϵλ Convergence threshold for λi.
ϵζ Convergence threshold for ζi.
πi Welfare of agent i.
π Welfare of the microgrid.
ρi Percentage difference of the power schedule of

agent i compared with the optimal solution.
ϱi Percentage difference of the price estimation of

agent i compared with the optimal solution.
bij Weight of the power mismatch estimation sent from

agent j to agent i.
Ci(·) Generation cost function of generator i.
G Communication topology.
li Coefficient of the linear term of the cost/utility

function of agent i.
Pmax
i Upper limit of power of agent i.

Pmin
i Lower limit of power of agent i.

∆Pi Change of the power schedule of agent i between
two iterations.

qi Coefficient of the quadratic term of the cost/utility
function of agent i.

Ui(·) Utility function of load i.
wij Weight of the electricity price estimation sent by

agent j to agent i.

I. INTRODUCTION

THE decarbonization of the power system has motivated
the prevalence of distributed renewable energy sources

(RESs) [1]. As onsite generators, the electricity generated by
distributed RESs can be accommodated locally to reduce the
transmission cost [2]. However, the intermittent and stochastic
nature of RESs poses significant challenges to the operation of
the grid [3], [4]. Providing an interconnection to dispatchable
generators and flexible loads, the microgrid has been widely
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Fig. 1. Illustration of the proposed blockchain-empowered microgrid energy management framework based on consensus algorithm. The blockchain layer
consists of peer nodes, which hold the distributed ledger and the smart contract. The microgrid layer consists of RESs, diesel generators, and flexible loads,
which are called agents. To prevent collusion, the information exchange between agents is achieved by a smart contract through the blockchain network. The
agents upload their auxiliary variables to the smart contract every iteration. The smart contract randomly selects the receivers and dispenses the information
through the blockchain network. After exchanging information, each agent updates its decision locally, following the consensus-based energy management
algorithm. Thereby, the microgrid energy management problem is solved in a collective way.

adopted to promote the local accommodation of RES genera-
tion [5].

Toward the optimal coordination of RESs, dispatchable
generators, and flexible loads, the energy management of
microgrids has become an active research topic [6]. Some
researchers have proposed centralized energy management
algorithms to utilize different kinds of flexible resources.
Kanchev et al. [7] proposed a microgrid energy management
algorithm to dispatch small-scale gas turbines with distributed
RESs. Parisio et al. [8] and Arkhangelski et al. [9] designed
energy management algorithms that utilize flexible loads to
mitigate the fluctuations of RES generation. Although the
above-mentioned energy management algorithms promote the
local accommodation of RES generation in microgrids, these
centralized methods have critical disadvantages such as pri-
vacy issues, the single point of failure problem, and low
scalability.

With the digitalization of the power system, applying
distributed algorithms on a multi-agent system for energy
management has become a vibrant research area [10]. The
consensus-based algorithm is a popular approach to achieve
fully decentralized coordination of multiple agents, as it elim-
inates the need for a central coordinator and only requires
neighboring communication [11]. Researchers have applied
consensus-based algorithms to both bidirectional and unidi-
rectional communication topologies. Rahbari-Asr et al. [12]
developed an incremental welfare consensus algorithm for
energy management with bidirectional communication, aiming
at social welfare maximization. Zhao et al. [13], [14] focused
on unidirectional communication and proposed consensus al-
gorithms to tackle the transmission loss and enhance privacy
protection. Hui et al. [15] studied the optimal coordination of
diesel generators and flexible loads with high plug-and-play
expandability. The above-mentioned research assumed that the
communication networks were ideal and fixed. However, in

real-world implementations, random link failures and conges-
tion always occur, which has motivated research on consen-
sus algorithms over random and time-varying communication
topologies [16]. Wu et al. [17] extended the consensus-based
algorithm considering random packet drops in the communica-
tion network. Yang et al. [18] studied the consensus algorithm
over communication networks with stochastic noise. Modeling
the status of the communication network as a Bernoulli pro-
cess, Wang et al. [19] implemented a gossip-based consensus
algorithm for energy management with random link failures.
Zhao et al. [20] studied the optimal resource management
in the microgrid, considering single link/node failure in the
network. However, there still exist two challenges that have
not been properly addressed in the published literature: 1)
the decentralized optimization problem requires a trusted and
verifiable solution environment, and 2) malicious agents might
collude and cheat.

Blockchain is a distributed ledger technology with the
features of transparency, verifiability, and immutability [21].
Different from a centralized database, in a blockchain network,
the data and update are transparent, since each node in the
network maintains a copy of the ledger. The ledger consists of
sequential information linked by cryptography, which enables
the nodes to verify the correctness of the data [22]. The
application of blockchain in the smart grid has been explored
by researchers. Luo et al. [23] proposed a blockchain-based
platform for trusted data aggregation and power dispatch in
the microgrid. Yang et al. [24] developed a blockchain-based
transactive energy system for residential prosumers, which
allowed verifiable transaction recording and preserved user
privacy. The advent of blockchain smart contracts further
empowers the automatic execution of predetermined functions.
Using the smart contract, the solving of energy management
problems can be achieved within the blockchain network,
making the solution process verifiable and reliable. Luo et
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al. [25] designed a blockchain-based transaction settlement
mechanism for the peer-to-peer energy sharing within pro-
sumer coalitions. Di Silvestre et al. [26] proposed an energy
blockchain framework that optimally scheduled the power
in the microgrid. Leeuwen et al. [27] and Yang et al. [28]
solved the energy management problem with the alternating
direction method of multipliers (ADMM). The smart contract
was utilized to act as the central coordinator, which solved
the dual problem of the ADMM. However, the solution of
the dual problem of the ADMM requires the smart contract
to collect information from all nodes. The task of solving
the dual problem can be assigned to a single node, e.g.,
in Reference [27], while this node might suffer from some
critical issues, such as a high computational burden. If multiple
nodes solve the dual problem in parallel, it might lead to a
waste of computational resources. Instead of directly solving
the dual problem, the consensus-based algorithms work with
neighboring information exchange between agents [29]. At
each iteration, with the information from its neighborhood,
each agent locally updates its decision until consensus is
reached. Because there is no need to collect information from
all of the agents, the consensus-based algorithm could be
a better candidate for implementation in the decentralized
blockchain network. To the best of the authors’ knowledge,
blockchain-empowered optimization based on fully decentral-
ized consensus-based algorithms has not been reported in the
literature.

Previous research usually assumed that the agents were
honest and exchanged information with their neighbors fol-
lowing consensus-based algorithms [30]. However, there may
be malicious agents that may collude and send manipulated
information to an innocent agent when the communication
topology is fixed and known [31], [32]. By misleading the
decision of innocent agents with manipulated information,
malicious agents benefit, while the interests of the innocent
agents are compromised. Such collusion is difficult to detect,
since the physical constraints of the system are not violated.
Chen et al. [33], [34] proposed a blockchain-based approach
to detect collusion in energy management, by selecting a few
delegates from the agents to form a coordination committee.
This approach assumes that the majority of the committee is
honest, while it might fail if the malicious agents take the
majority in the committee. Because malicious agents rely on
a fixed and known communication topology to design the
manipulated information, the collusion can also be effectively
prevented if the communication topology becomes random
and unknown a priori. However, the communication networks
used in consensus-based methods are usually sparse, making
it difficult to randomize the communication topology. With the
blockchain smart contract, the receivers of the information can
be randomly selected, which forms a communication topology
that is unknown a priori. Thus, the collusion can be effectively
prevented. To the best knowledge of the authors, related
communication mechanisms and blockchain frameworks have
not been reported in the literature.

In this paper, we propose a blockchain-empowered frame-
work to solve the energy management problem of microgrids
with the consensus-based algorithm. Instead of letting the

agents communicate with each other directly, the smart con-
tract is utilized to forward the information from one agent to
several randomly selected receivers, and thereby the malicious
agents cannot find their accomplices and the collusion is pre-
vented. The randomness of the communication topology brings
significant challenges to guarantee the convergence of the
consensus-based algorithm and the optimality of the obtained
solution. To tackle this issue, we adopt a novel consensus-
based algorithm and theoretically prove the effectiveness of
the algorithm over the proposed communication mechanism.
The contributions of this paper are threefold:

1) A blockchain framework is proposed for the energy
management in microgrids. The coordination of the
RESs, the diesel generators, and the flexible loads are
modeled as a convex and decomposable problem, which
is solved by a blockchain-based decentralized algorithm.

2) To prevent collusion, we propose a random information
transmission mechanism based on a blockchain smart
contract to replace the conventional time-invariant com-
munication topology. The consensus-based algorithm is
extended to solve the energy management problem over
the random and time-varying communication topology.

3) Based on matrix perturbation theory and the Karush–
Kuhn–Tucker (KKT) conditions, we theoretically prove
that over the time-varying communication topology, the
proposed algorithm converges to the global optimal
solution with probability 1, and the physical constraints
of individual agents are not violated.

The remainder of this paper is organized as follows. Section
II introduces the proposed blockchain framework and the
model of the energy management problem. Section III presents
the design of the consensus-based energy management algo-
rithm and the theoretical proofs of its effectiveness. Section IV
demonstrates the effectiveness of the proposed method through
numerical case studies. Section V concludes the paper.

II. PRELIMINARY MODELS

A. Blockchain-Empowered Energy Management Framework

As shown in Fig. 1, we propose a blockchain-empowered
microgrid energy management framework that consists of
two layers, namely the blockchain layer and the microgrid
layer. The blockchain layer is based on an open-source per-
missioned blockchain framework, Hyperledger Fabric [35].
The microgrid layer consists of RESs, diesel generators, and
flexible loads, which are referred to as agents in the following
discussions. In the proposed framework, each agent in the
microgrid holds a peer node, which is the basic component of
the blockchain layer. With the peer node, each agent maintains
a copy of the blockchain. As the solution process of the en-
ergy management problem is recorded in the blockchain, any
malicious manipulations of information can be traced. Thus,
a trusted and verifiable solution environment is established
between agents in the microgrid.

The blockchain smart contract is utilized to enable the
automatic operation of the blockchain layer. The agents can
only interact with the blockchain by invoking the pre-defined
functions in the smart contract, which is installed on the peer
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node. As previously discussed, in conventional consensus-
based algorithms, the agents usually exchange information
through a known and fixed communication topology. When the
communication topology is fixed and known, malicious agents
can collude and send manipulated information to specific
receivers to mislead their decision. To tackle this issue, we
integrate a random information transmission module into the
smart contract to prevent collusion. At each iteration, the
agents upload the information to the smart contract. The
smart contract randomly selects the receivers and dispenses
the information through the blockchain network. In this way,
a time-varying communication topology between agents is
formed, where the receivers are unknown to the senders a
priori. With the communication topology being random and
time varying, the malicious agents cannot collude as they
cannot identify the receivers of their information.

We further design a consensus-based algorithm, which is in-
troduced in detail in Section III, for the decentralized solution
of the energy management problem. Exchanging only auxiliary
variables, each agent updates its power schedule locally. Thus,
private information, e.g., cost functions and power limits, are
well-protected from leaking. Through an iterative process, the
agents solve the energy management problem collectively.
Therefore, with the proposed blockchain framework and the
consensus-based energy management algorithm, we provide
a trusted and verifiable environment to solve the energy
management problem in a privacy-protecting and collusion-
preventing manner.

B. Optimization Problem Formulation

This subsection formulates the optimal energy management
problem that will be solved by the proposed blockchain
framework. Before that, we first define the necessary notation
here. Three sets are defined to categorize the agents, namely
the set of RESs IR, the set of diesel generators IG, and the set
of flexible loads IL. The set of all of the agents is defined as
the union of three sets, i.e., I = IR∪IG∪IL. Using k as the it-
eration index, the time-varying communication topology of the
multi-agent system is represented by a directed graph G (k) =
{V, E (k)}. The node set V is equivalent to the agent set I.
The edge set E (k) represents the activated communication
links between agents, which vary across iterations. An edge
(i, j) ∈ E (k) means that agent i receives information from
agent j at iteration k. The set of out-neighbors of agent i at
iteration k is defined as N−

i (k) = {j|(j, i) ∈ E (k) , i ̸= j}.
Similarly, the set of in-neighbors of agent i at iteration k
is defined as N+

i (k) = {j|(i, j) ∈ E (k) , i ̸= j}. Digraph
G (k) is assumed to be a simple graph, i.e., multiple edges
and self-loops are not considered. With the price of electricity
in one market interval denoted as λ, the optimization models
of individual agents in the microgrid are outlined below.

1) Model of Renewable Energy Sources: Assuming that the
renewable energy generation has no cost, the objective of the
RES is to maximize the profit of electricity generation within
its predicted generation. For each RES i ∈ IR, its individual

optimization problem can be written as

min
Pi

− λPi

s.t. 0 ≤ Pi ≤ Pmax
i ,

(1)

where Pi is the actual power generation of RES i, and Pmax
i

is its predicted maximum available power generation.
2) Model of Diesel Generators: For each diesel generator

i ∈ IG, its generation cost function Ci(Pi) can be represented
by a quadratic function of its power output Pi [12], [36]:

Ci(Pi) = qiP
2
i + liPi, ∀i ∈ IG, (2)

where qi and li are coefficients of the quadratic term and
linear term, respectively. Then, for diesel generator i ∈ IG,
the individual optimization problem can be written as

min
Pi

Ci(Pi)− λPi

s.t. Pmin
i ≤ Pi ≤ Pmax

i ,
(3)

where Pmin
i and Pmax

i are the lower and upper bounds of its
power generation, respectively.

3) Model of Flexible Loads: For each flexible load i ∈ IL,
we define a utility function, Ui(Pi), in units of $, to describe
its satisfaction of consuming electricity. The utility function
Ui(Pi) is assumed to have the following properties [14], [37]:

1) Non-decreasing: The utility function is a non-decreasing
function with respect to the power consumption Pi, i.e.,
∂Ui(Pi)

∂Pi
≥ 0;

2) Saturation: The second-order derivative of the utility
function is non-positive, i.e., ∂2Ui(Pi)

∂P 2
i

≤ 0;
3) Zero-crossing: The utility is zero when there is no

electricity consumption, i.e., Ui(0) = 0.
An example of the utility function that satisfies the above
conditions is a quadratic function [12], [13]:

Ui(Pi) = qiP
2
i + liPi, (4)

where qi and li are the coefficients of the quadratic term and
linear term, respectively, satisfying

2qiP
max
i + li = 0, qi < 0, li > 0, (5)

which ensures that the utility function saturates at the max-
imum power consumption. For flexible load i ∈ IL, the
objective is to minimize its electricity purchase costs minus
its utility, which can be formulated as

min
Pi

λPi − Ui(Pi)

s.t. Pmin
i ≤ Pi ≤ Pmax

i ,
(6)

where Pmin
i and Pmax

i are the lower and upper bounds of the
power consumption, respectively.

4) Microgrid Energy Management Problem: The goal of
energy management is to maximize the social welfare. Thus,
combining the optimization problems of individual agents, the
energy management problem of the microgrid is modeled as

min
Pi, i∈I

∑
i∈IG

Ci(Pi)−
∑
i∈IL

Ui(Pi) (7a)

s.t.
∑
i∈IR

Pi +
∑
i∈IG

Pi −
∑
i∈IL

Pi = 0, (7b)

Pmin
i ≤ Pi ≤ Pmax

i , ∀i ∈ I. (7c)
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It is assumed that the following relationship holds∑
i∈IR∪IG

Pmin
i ≤

∑
i∈IL

Pmin
i <

∑
i∈IL

Pmax
i ≤

∑
i∈IR∪IG

Pmax
i ,

(8)

which ensures that the flexible loads can be supplied by the
generators, i.e., problem (7) has a feasible solution.

III. PROPOSED CONSENSUS-BASED ENERGY
MANAGEMENT ALGORITHM

A. Design of Consensus-Based Algorithm

Given that problem (7) is convex and strong duality holds,
the consensus-based algorithm is formulated on the basis of the
classical primal-dual decomposition method [38]. The equality
constraint (7b) is written into the objective function as follows:

L (P , λ) =
∑
i∈IG

Ci(Pi)−
∑
i∈IL

Ui(Pi)

+ λ

(∑
i∈IL

Pi −
∑
i∈IG

Pi −
∑
i∈IR

Pi

)
, (9)

where λ is the Lagrange multiplier, which is interpreted as the
electricity price in the context of energy management.

Since the inequality constraints (7c) are local constraints of
the agents, given λ (k + 1), for individual agents, their power
schedules can be updated by solving the sub-problems

Pi (k + 1) =



argmin
Pi

− λ (k + 1)Pi

s.t. 0 ≤ Pi ≤ Pmax
i

,∀i ∈ IR,

argmin
Pi

Ci(Pi)− λ (k + 1)Pi

s.t. Pmin
i ≤ Pi ≤ Pmax

i

,∀i ∈ IG,

argmin
Pi

λ (k + 1)Pi − Ui(Pi)

s.t. Pmin
i ≤ Pi ≤ Pmax

i

,∀i ∈ IL.

(10)

Given the solutions of the sub-problems, the Lagrange multi-
plier λ can be updated along its gradient direction, which is
called solving the master problem, as follows:

λ (k + 1) = λ (k) + ηζ (k) , (11)

ζ (k) =

(∑
i∈IL

Pi (k)−
∑
i∈IG

Pi (k)−
∑
i∈IR

Pi (k)

)
, (12)

where η is the step size, and ζ (k) is the mismatch between
the power consumption and generation.

The classical primal-dual decomposition method iteratively
solves the above master and sub-problems, and it converges to
an optimal solution in finite iterations. However, in equations
(11) and (12), the calculation of λ and ζ requires collecting
information from all agents, which is unavailable to individual
agents in a decentralized solution process. Thus, we introduce
two consensus variables, λi and ζi, to represent the local
estimation of the global information performed by agent i.
We also introduce two matrices, namely, W (k) = [wij (k)]
and B (k) = [bij (k)], to weight λi and ζi at each iteration,
respectively. Since our proposed method adopts a time-varying
communication topology, the weight matrices need to vary

across iterations. Inspired by References [13], [18], [19], we
define the weights as

wij (k) =

{
1

|N+
i (k)|+1

, ∀j ∈ N+
i (k)

0, otherwise
, (13)

bij (k) =

{
1

|N−
i (k)|+1

, ∀j ∈ N−
i (k)

0, otherwise
, (14)

where |·| denotes the cardinality of the set.
The proposed consensus algorithm is outlined in Algo-

rithm 1. According to equation (13), for agents j ∈ N+
i (k),

the weights wij(k) are equal and sum to 1, implying that the
first two terms of equation (17) calculate the weighted average
of λj , j ∈ N+

i (k). In this way, the variables λi, i ∈ I will
approach the same value. The last term of equation (17) is an
innovation term. We explain the rationale behind this term by
interpreting the estimation of the global power mismatch ζi(k)
as the global net demand estimated by agent i at iteration k. If
there is a net demand, agent i expects the cost of electricity to
increase, since more incentives are needed to encourage more
generation, and vice versa. According to the sub-problems
(10), as the price estimation λi increases, the power generation
of a generator will monotonically increase until its upper
bound is reached, while the power consumption of a flexible
load will monotonically decrease until the lower bound is
reached. According to equation (19), ∆Pi(k) will be negative,
causing power mismatch estimation ζi to approach zero when
it is updated with equation (18). Therefore, Algorithm 1
iterates to a stationary point, where the price estimations reach
a consensus value and the power mismatch estimations reach
zero, i.e., λi = λ∗, ζi = 0,∀i ∈ I, which will be theoretically
proven later. The first difference between the proposed method
and those in References [13], [18], [19] is that we allow the
agents to select their initial states from given ranges, instead
of given values. Compared with References [13], [18], our
method is applied to a time-varying communication topology,
and thus the weight matrices are designed to change dy-
namically. Compared with References [18], [19], our method
further considers RESs and flexible loads in microgrids, which
constructs a more general practical scenario.

B. Proof of Algorithm Convergence and Optimality

To analyze the convergence of the algorithm, we first
reformulate the update rules (17) and (18) into the matrix form:[

λ (k + 1)
ζ (k + 1)

]
=

[
W (k) η (k) I

0 B (k)

] [
λ (k)
ζ (k)

]
+

[
0

∆P (k)

]
, (21)

where I is the identity matrix. The matrix form (21) is a linear
non-homogeneous system, whose convergence is difficult to
prove. However, the convergence of a linear homogeneous
system can be analyzed with mathematical tools such as
eigenvalue derivatives [39]. Thus, based on Theorem 1, we
convert (21) to its homogeneous form.



6

Algorithm 1 Proposed Consensus-Based Algorithm
Initialization:

The initial power generation/consumption Pi (0) can be set
to any value within the range

[
Pmin
i , Pmax

i

]
. The consensus

variables are initialized as follows:

λi (0) =


0, ∀i ∈ IR

C
′

i(Pi (0)), ∀i ∈ IG

U
′

i (Pi (0)), ∀i ∈ IL

, (15)

ζi (0) =

{
−Pi (0) , ∀i ∈ IR ∪ IG

Pi (0) , ∀i ∈ IL
, (16)

where C
′

i(·) and U
′

i (·) are the first-order derivatives of Ci(·)
and Ui(·), respectively.

Iteration:
Step 1 (Update price estimation): Update λi as follows:

λi (k + 1) =λi (k) +
∑

j∈N+
i (k)

wij (k) (λj (k)− λi (k))

+ η (k) ζi (k) , (17)

where η (k) is the step size of using the power mismatch
estimation to update the price estimation.
Step 2 (Optimal response): Each agent calculates its
optimal response to λi (k + 1) according to equation (10).
Step 3 (Update power mismatch estimation): Update ζi
as follows:

ζi (k + 1) =

1−
∑

h∈N−
i (k)

bih (k)

 ζi (k)

+
∑

j∈N+
i (k)

bji (k) ζj (k) + ∆Pi (k) , (18)

where ∆Pi (k) is the change of the power resulting from
the optimal response to the updated price, which is defined
as

∆Pi (k) =

{
Pi (k)− Pi (k + 1) ,∀i ∈ IR ∪ IG

Pi (k + 1)− Pi (k) ,∀i ∈ IL
. (19)

Step 4 (Termination check): The algorithm is terminated
if consensus variables λi and ζi reach a stationary point.
Given the thresholds ϵλ and ϵζ , the algorithm terminates if{

∥λi (k + 1)− λi (k)∥ ≤ ϵλ

∥ζi (k + 1)− ζi (k)∥ ≤ ϵζ
. (20)

Otherwise, let k = k + 1 and go back to Step 1.

Theorem 1. By taking a small enough step size η (k), the lin-
ear non-homogeneous system (21) can be well-approximated
by the following linear homogeneous system:[

λ (k + 1)
ζ (k + 1)

]
= T (k)

[
λ (k)
ζ (k)

]
,

T (k) =

[
W (k) η (k) I

K (k) (W (k)− I) B (k) + η (k)K (k)

]
, (22)

where K(k) is a coefficient matrix, whose definition is pre-
sented in Appendix A.

Proof. Please see Appendix A. ■

Given the linear homogeneous system (22), we first dis-
cuss its stationary point. Recall that in equation (17), we
define λi(k + 1) as the sum of the weighted average of
λj ,∀j ∈ N+

i (k) ∪ {i} and a portion of ζi(k). Therefore, for
every i, λi(k + 1) = λi(k) holds if and only if λi(k) =
λj(k),∀j ∈ N+

i (k) and ζi(k) = 0. Thus, as equation (22)
converges to an equilibrium, λ (k) and ζ (k) converge to
λ∗1 and 0, respectively. Hence,

[
λ∗1T 0T

]
is the target

equilibrium state of system (22). Considering that the linear
homogeneous system (22) is time varying, we introduce two
probabilistic descriptions of convergence, which are defined
as follows:

Definition 1 (Mean square consensus [40]). For sys-
tem (22), the mean square consensus is achieved if
E
[
∥λ (k)− λ∗1∥22

]
→ 0 and E

[
∥ζ (k)− 0∥22

]
→ 0 hold

as k → ∞ for every initialization following equations (15)
and (16).

Definition 2 (Almost sure consensus [40]). For system (22),
the almost sure consensus is achieved if

[
λT ζT

]
→[

λ∗1T 0T
]

as k → ∞ with probability 1, for every initial-
ization following equations (15) and (16).

The convergence of the algorithm and the optimality of the
obtained solution are stated through the following theorems.

Theorem 2. With a small enough step size η (k) at every
iteration, the mean square consensus of system (22) is achieved
by Algorithm 1.

Proof. Please see Appendix B. ■

Theorem 3. If Algorithm 1 achieves the mean square consen-
sus of system (22), then

[
λT ζT

]
converges to

[
λ∗1T 0T

]
with probability 1.

Proof. Please see Appendix C. ■

Theorem 4. If there exists a feasible solution to problem (7),
the stationary point of system (22) that Algorithm 1 converges
to is the global optimal solution of problem (7).

Proof. Please see Appendix D. ■

Remark. Theorem 2 implies that for the linear homogeneous
system (22), the expected value of the mean square error
between its stationary point and the target equilibrium con-
verges to zero as the algorithm iterates. Theorem 3 states
that although the communication topology of the proposed
method is random and time varying, the target equilibrium
will eventually be reached as k → ∞. Theorem 4 states the
optimality of the solution obtained by Algorithm 1.

IV. CASE STUDY

In this section, we validate the effectiveness of the proposed
method with multiple experiments, both within a simulation
environment and on a hardware system. We first introduce
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TABLE I
PARAMETERS OF AGENTS IN CASE STUDY

Agent Type q l Pmax Pmin

($/MW2) ($/MW) (MW) (MW)
1 Diesel generator 0.4 0 7 0
2 Diesel generator 0.6 0 6 0
3 RES - - 4.2 0
4 Flexible load −2.5 30 6 4.5
5 Flexible load −2.8 44.8 8 6
6 Flexible load −3 48 8 5.8
7 Diesel generator 0.5 0 5 0

the setup of the blockchain-empowered energy management
system and the parameters of the microgrid system. With these
systems, we demonstrate that if the communication topology
is time invariant and known, malicious agents can mislead
the decision of an innocent agent. We also demonstrate that
the proposed method converges to the global optimal solution
as collusion is prevented. The plug-and-play capability of the
proposed algorithm is tested in case 2, where an agent plugs in
later than the others. In case 3, we test the proposed algorithm
in a modified 51-bus distribution system [41], and we show
that the convergence time of the proposed algorithm did not
significantly increase as the number of agents increased.

A. System Setup

1) Hardware system: To evaluate the feasibility of the
proposed method, we set up the blockchain-empowered energy
management system on seven Rock Pi X devices, as shown in
Fig. 2a. Rock Pi X is an X86 single-board computer, which
features a 64-bit Intel Cherry Trail quad-core processor Atom
x5-Z8350, 4 GB of RAM, and a 32-GB SD card. All of
the Rock Pi X devices ran Ubuntu 20.04 as the operating
system [42]. The communication network between Rock Pi X
devices was established based on the gRPC framework with
the Go programming language [43].

2) Blockchain system: In this study, we adopted an open-
source blockchain platform, Hyperledger Fabric, to deploy
our proposed blockchain framework. Specifically, we used
Hyperledger Fabric v2.3, for the following reasons. First, this
is a long-term support release that has been well verified. Sec-
ond, Hyperledger Fabric supports smart contracts, which are
essential to the implementation of our proposed method. Third,
the smart contract of the Hyperledger Fabric can be written
in standard programming languages, e.g., Go and JavaScript,
which makes it easy for us to realize our customized designs.

In the blockchain network, each Rock Pi X device served
as a peer node and represented one agent in the microgrid.
As a permissioned blockchain, a digital identity, which was
encapsulated in an X.509 digital certificate, was assigned
to each agent in the microgrid. The X.509 certificate was
stored in the corresponding Rock Pi X device and used for
the authenticity check when the agent interacted with the
blockchain. We also used a web-based front-end utility to
visualize the activities of the proposed blockchain framework,
as shown in Fig. 2b.

3) Microgrid system: The microgrid system used in cases
1 and 2 had seven agents, including three diesel generators,

one RES, and three flexible loads. The parameters of the
agents are outlined in Table I. We adopted a modified 51-
bus distribution system in case 3, the parameters of which
are outlined in Table V. During the solution process, at each
iteration, each agent accessed its corresponding peer node in
the blockchain network to exchange information with other
agents. Then, each agent executed Steps 1–4 of Algorithm 1
locally. We developed a terminal-based interface to show the
solution process and the obtained solution of each agent, as
shown in Fig. 2b.

B. Case 1: Effectiveness of Proposed Algorithm

In this case, the performances of the following methods
were compared:

1) B1: The centralized optimization method, which pro-
vided the global optimal solution P ∗

i .
2) B2: The conventional consensus-based method, which

adopted the time-invariant communication topology in
Fig. 3 and was vulnerable to collusion.

3) B3: The proposed consensus-based method, which
adopted a time-varying communication topology em-
powered by the blockchain smart contract.

To measure the optimal gap during the iteration process, the
Euclidean distance to the global optimum is defined as

δk = ∥P k − P ∗∥ . (23)

To indicate the accuracy of the final solutions obtained by
B2 and B3, we also define the percentage difference of the
power compared with the results of B1:

ρi =
(Pi − P ∗

i )

P ∗
i

, (24)

where ρi is the percentage difference of the power, Pi is the
final solution, and P ∗

i is the global optimal solution obtained
by B1.

To show the impact of collusion on the social welfare,
we define the welfare of each agent and its corresponding
percentage difference as

πi =


λPi, ∀i ∈ IR,

λPi − Ci(Pi), ∀i ∈ IG,

Ui(Pi)− λPi, ∀i ∈ IL,

(25)

ϱi =
(πi − π∗

i )

π∗
i

, (26)

where πi is the welfare of agent i, ϱi is the percentage
difference corresponding to πi, and π∗

i is the global optimal
solution obtained by B1. Thus, the social welfare of the
microgrid system can be expressed as π =

∑
i∈I πi.

The results of these three methods are listed in Tables II and
III. The iteration processes of the different variables are shown
in Fig. 4. For both B2 and B3, the global power mismatch
ζ = 0, implying that the obtained solutions were both feasible.
However, as B2 adopted time-invariant communication, mali-
cious agents (Agents 2 and 3) could mislead the victim (Agent
7) into believing that the electricity price was converging
to zero, as shown by the dashed line in Fig. 4c. Following
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Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

Agent 7

Agent 1

1. Overview of blockchain status
2. Agent information
3. Connection to the blockchain
4. Smart contract information
5. Solving process and results

1

2

3

4

5

(a) Hardware system based on Rock Pi X devices (b) Web-based visualization and terminal-based interface

Fig. 2. Hardware experiment system based on Rock Pi X devices, a web-based visualization of the blockchain, and a terminal-based interface.

TABLE II
RESULTS OF CASE 1: POWER

P1(MW) P2(MW) P3(MW) P4(MW) P5(MW) P6(MW) P7(MW) ζ(MW)
B1 6.1319 4.0879 4.2000 5.0189 7.1240 7.1824 4.9055 0.0000
B2 8.4647 5.6431 4.2000 4.6457 6.7908 6.8714 0.0000 0.0000
B3 6.1319 4.0879 4.2000 5.0189 7.1240 7.1824 4.9055 0.0000
ρB2 +38.04% +38.04% 0 −7.44% −4.68% −4.33% −100.00% 0
ρB3 0 0 0 0 0 0 0 0

TABLE III
RESULTS OF CASE 1: WELFARE

π1($) π2($) π3($) π4($) π5($) π6($) π7($) λ($/MWh) π($)
B1 15.0400 10.0267 20.6031 62.9733 142.1045 154.7612 12.0320 4.9055 417.5409
B2 28.6603 19.1069 28.4413 53.9552 129.1204 141.6475 0.0000 6.7717 400.9315
B3 15.0400 10.0267 20.6031 62.9733 142.1045 154.7612 12.0320 4.9055 417.5409

ϱB2 +90.56% +90.56% +38.04% −14.32% −9.14% −8.47% −100.00% +38.04% −3.98%

ϱB3 0 0 0 0 0 0 0 0 0

1

2

3

4

65

7

Malicious agents (agent 2 & 3) block an 

innocent agent (agent 7) out of the energy 

management solving process by convincing 

agent 7 the electricity price is zero (could 

happen when the renewable energy 

generation is large).

Fig. 3. Time-invariant communication topology used in case 1, where
malicious agents (Agents 2 and 3) can block an innocent agent (Agent 7)
out of the solution process.

equation (10), Agent 7 did not generate electricity, which
resulted in a 38.04% increase in the electricity price. The
generation of the malicious agents also increased, leading to a
significant increase in the welfare of Agents 2 and 3. However,
the welfare of all the agents on the demand side and the victim,
i.e., Agent 7, was reduced due to the collusion of Agents 2 and
3. Such collusion also led to a 3.98% decrease in the social
welfare of the entire microgrid. Since the proposed method
adopted a time-varying communication topology empowered

by a blockchain smart contract, the malicious agents could not
send manipulated information to the victim, i.e., the collusion
was prevented. The solution obtained by the proposed method
was identical to the global optimal solution, which verified its
effectiveness.

C. Case 2: Plug-and-Play Capability

In case 2, to test the plug-and-play capability, it was
assumed that Agent 7 plugged in later than the other agents.
The optimal solutions in two scenarios, i.e., the microgrid
with and without Agent 7, are outlined in Table IV. Agents
1–6 first tried to solve the energy management problem. As
shown in Fig. 5, Agents 1–6 converged to the original optimal
solution until Agent 7 plugged in at the 50th iteration. As
the optimal solution changed, each agent adjusted its power
generation accordingly. Without requiring a re-initialization of
the solution process, the system converged to the new optimal
solution quickly. This implied that the proposed algorithm has
plug-and-play capabilities.
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TABLE IV
RESULTS OF DIFFERENT SCENARIOS IN CASE 2

Scenario P ∗
1 (MW) P ∗

2 (MW) P ∗
3 (MW) P ∗

4 (MW) P ∗
5 (MW) P ∗

6 (MW) P ∗
7 (MW) λ∗($/MWh)

w/o Agent 7 8.4647 5.6431 4.2000 4.6457 6.7908 6.8714 - 6.7717
w/ Agent 7 6.1319 4.0879 4.2000 5.0189 7.1240 7.1824 4.9055 4.905
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Fig. 4. Results of case 1: a) Euclidean distance to optimum, b) global
power mismatch, c) price estimation, and d) value of the objective function.
In the presence of malicious agents, the consensus-based algorithm on the
time-invariant topology converged to a non-optimal but feasible solution. The
proposed method converged to the global optimal solution since collusion was
prevented.

D. Case 3: 51-bus Distribution System Implementation

The proposed consensus-based energy management algo-
rithm was tested on a modified 51-bus distribution system.
As shown in Fig. 6, the generation side consisted of seven
diesel generators and five RESs, with overall capacities of 50
and 25 MW, respectively. Denoted by the orange arrows, there
existed six flexible loads in the system, for which the power
consumption could range from 18.75 to 25 MW in total. The
rest of the loads were non-dispatchable critical loads, which
were aggregated by five aggregators in the energy management
problem, consuming 25 MW of power in total. The parameters
of each agent are listed in Table V.

The results of case 3 are listed in Table VI. As illus-
trated in Fig. 7a, within 50 iterations, the power genera-
tion/consumption of each agent converged to the stationary
point, which coincided with the results from a centralized
optimization solver. As shown in Fig. 7b, the power mismatch
estimations of all of the agents were reduced to zero, implying
that the global power balance constraint (7b) was satisfied.
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Fig. 5. Results of case 2: a) Power generation/consumption, b) power
mismatch estimation, c) price estimation, and d) value of the objective
function. The variables first converged to the global optimum of the energy
management problem with six agents. After Agent 7 plugged in, the variables
converged to a new equilibrium that coincided with the optimal solution of the
current scenario, without requiring a re-initialization of the solution process.

Thus, the obtained solution was a feasible solution to the
microgrid energy management problem. Illustrated by Fig. 7c,
the price estimation of each agent converged to $3.1240/MWh,
which was identical to the optimal value of the dual variable
provided by the centralized method. The value of the objective
function (7a) also converged to the optimal point, as shown
in Fig. 7d. This case demonstrated that the iterations needed
by the proposed method to reach the global optimum did not
significantly increase as the number of agents increased. Thus,
the proposed method has great potential to be applied in large-
scale systems.

V. CONCLUSIONS

To promote the local accommodation of renewable energy,
in this paper, we propose a blockchain-empowered framework
for microgrid energy management. The energy management
problem was formulated into a convex and decomposable
form, and consequently it could be solved in a decentralized
manner. Considering the prevention of collusion between
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TABLE V
PARAMETERS OF AGENTS IN CASE 3

Agent Type q l Pmax Pmin

($/MW2) ($/MW) (MW) (MW)
1 Diesel generator 0.4 0 10 0
2 Diesel generator 0.6 0 6.5 0
3 Diesel generator 0.5 0 9.5 0
4 Diesel generator 0.7 0 5 0
5 Diesel generator 0.43 0 8.5 0
6 Diesel generator 0.48 0 5.5 0
7 Diesel generator 0.56 0 5 0
8 RES - - 7 0
9 RES - - 3.25 0
10 RES - - 5 0
11 RES - - 6 0
12 RES - - 3.75 0
13 Flexible load −2.5 25 5 3.75
14 Flexible load −2.8 19.6 3.5 2.25
15 Flexible load −3 34.5 5.75 4.5
16 Flexible load −2.2 17.6 4 2.75
17 Flexible load −2.6 19.5 3.75 3
18 Flexible load −3.5 21 3 2.5
19 Fixed load −3 30 5 5
20 Fixed load −3.2 35.2 5.5 5.5
21 Fixed load −3.5 43.75 6.25 6.25
22 Fixed load −2.9 26.1 4.5 4.5
23 Fixed load −3.1 23.25 3.75 3.75

Diesel generator Renewable energy source

Fixed load Flexible load

Fig. 6. 51-bus distribution system with seven generators, five renewable
energy sources, and six flexible loads.

malicious agents, we propose a random information trans-
mission mechanism to replace the time-invariant communi-
cation topology and integrate it into the smart contract of
the proposed blockchain framework. To tackle the challenges
brought by the time-varying communication topology, we
adopt a novel consensus-based algorithm to obtain the optimal
solution of the energy management problem. Beyond the
numerical demonstration, the convergence of the algorithm
and the optimality of the solution were theoretically proven.
In the case studies, we demonstrated that the conventional
method is prone to collusion, while the proposed method
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Fig. 7. Results of case 3: a) Power generation/consumption, b) power mis-
match estimation, c) price estimation, and d) value of the objective function.
The variables gradually converged to the global optimal solution of the energy
management problem, without a significant increase in the convergence time,
which demonstrates the capability of the proposed algorithm on a large system.

can obtain the global optimal solution. In addition to the
convergence and optimality, the plug-and-play capability of
the proposed algorithm was also verified, as the proposed
method did not require re-initialization after new agents
plugged in. The proposed algorithm was also implemented
in a modified 51-bus distribution system to show that the
solution time did not significantly increase as the size of
the system increased. To keep the mathematical formulation
clear and easy to understand, the power transfer loss of the
microgrid was not considered in this paper. Future research
directions might include modeling the power transfer loss in
the energy management problem to make the power balance
of the microgrid more precise.

APPENDIX A
PROOF OF THEOREM 1

To derive the homogeneous form of (21), we first introduce
the following lemma.

Lemma 1 (Linear approximation [19]). With a small enough
step size η (k) at every iteration k, the solution of sub-
problems (10) can be well-approximated through linearization.

For i ∈ IG, the first order optimality condition of (10) is

λi (k) = C
′

i(Pi (k)), (27)

where C
′

i(·) is the first-order derivative of the cost function
with respect to Pi.
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TABLE VI
RESULTS OF CASE 3

P ∗
1 (MW) P ∗

2 (MW) P ∗
3 (MW) P ∗

4 (MW) P ∗
5 (MW) P ∗

6 (MW) P ∗
7 (MW) P ∗

8 (MW)
3.9050 2.6033 3.1240 2.2314 3.6325 3.2541 2.7893 7.0000

P ∗
9 (MW) P ∗

10(MW) P ∗
11(MW) P ∗

12(MW) P ∗
13(MW) P ∗

14(MW) P ∗
15(MW) P ∗

16(MW)
3.2500 5.0000 6.0000 3.7500 4.3752 2.9421 5.2293 3.2900

P ∗
17(MW) P ∗

18(MW) P ∗
19(MW) P ∗

20(MW) P ∗
21(MW) P ∗

22(MW) P ∗
23(MW) λ∗($/MWh)

3.1492 2.5537 5.0000 5.5000 6.2500 4.5000 3.7500 3.1240

Lemma 1 implies that by lifting the power limits, the
following first-order Taylor expansion around a fixed point
Pi (k) holds:

λi (k) + ∆λi (k) ≈ C
′

i(Pi (k)) + C
′′

i (Pi (k))∆Pi (k)

⇒ ∆Pi (k) ≈
[
C

′′

i (Pi (k))
]−1

∆λi (k) . (28)

Considering the power limits, at iteration k + 1, the power
generation of the diesel generator can be expressed as

Pi (k + 1) =Pi (k)−Ki (k) (λi (k + 1)− λi (k)) ,

−
[
C

′′

i (Pi (k))
]−1

< Ki (k) < 0, (29)

where Ki (k) is a coefficient that relates the change of power
to the change of the price estimation at iteration k.

Based on equation (19), ∆Pi (k) can be rewritten as

∆Pi (k) = Ki (k) (λi (k + 1)− λi (k)) ,∀i ∈ IG. (30)

Similarly, for i ∈ IL, the power consumption at iteration k+1
can be expressed as

Pi (k + 1) =Pi (k) +Ki (k) (λi (k + 1)− λi (k)) ,[
U

′′

i (Pi (k))
]−1

< Ki (k) < 0, (31)

which implies that equation (30) holds for every i ∈ IL.
For i ∈ IR, equation (10) implies that

Pi (k + 1) = Pi (k) = Pmax
i . (32)

By assuming that Ki (k) = 0,∀i ∈ IR, equation (30)
also holds for every i ∈ IR. Thus, by taking K (k) =
diag {Ki (k)}, the linear homogeneous form of system (21)
can be written as[

λ (k + 1)
ζ (k + 1)

]
= T (k)

[
λ (k)
ζ (k)

]
,

T (k) =

[
W (k) η (k) I

K (k) (W (k)− I) B (k) + η (k)K (k)

]
. (33)

APPENDIX B
PROOF OF THEOREM 2

For the linear homogeneous system (22), the matrix T (k)
can be regarded as a matrix T 0 (k) perturbed by η (k)∆ (k)
with the assumption of η (k) being small enough, i.e.,

T (k) = T 0 (k) + η (k)∆ (k) , (34)

where
T 0 (k) =

[
W (k) 0N×N

K (k) (W (k)− I) B (k)

]

∆ (k) =

[
0N×N I

0N×N K (k)

] . (35)

Denoting the spectrum of a matrix by E [·], it holds that

E [T (k)] = E [T 0 (k)] + η (k)E [∆ (k)] . (36)

Since T 0 (k) is a lower triangular matrix, its eigenvalues are
the eigenvalues of the matrices on the diagonal, i.e., W (k)
and B (k). Since W (k) is a row stochastic matrix and B (k)
is a column stochastic matrix, the eigenvalues of T 0 (k) are

1 = |σ1|= |σ2|> |σ3|. . . ≥ |σ2N|. (37)

Thus, 1 is the semi-simple eigenvalue, and the rest of
the eigenvalues lie in the open unit disk of the complex
plane. In the following paragraphs, we discuss the behavior
of eigenvalues under a small perturbation η (k)∆ (k).

For T 0 (k), the right and left eigenvectors corresponding to
eigenvalues σi by νi and µi are denoted as

µT
i T 0 (k) = σiµ

T
i ,T 0 (k)νi = σiνi,µ

T
i νi = 1,µT

i νj = 0.
(38)

It can be verified that the following vectors are the right and
left eigenvectors corresponding to eigenvalues σ1 = σ2 = 1
that satisfy equation (38):

[
ν1 ν2

]
=

[
0 1

1
1Tγ1

γ1
K̂(k)

1Tγ1

γ1

]
[

µT
1

µT
2

]
=

[
−1TK (k) 1T

1
1Tω1

ω1
T 0

] , (39)

where γ1 is the right eigenvector of B (k) corresponding to
eigenvalue 1, ω1 is the left eigenvector of W (k) correspond-
ing to eigenvalue 1, and K̂ (k) is defined as the sum of all
Ki (k) at iteration k, satisfying K̂ (k) =

∑
i∈I Ki (k) < 0.

According to the theory of eigenvalue derivatives [39], the
derivative of the eigenvalues with respect to η (k) at the point
η (k) = 0 can be calculated as

∂σi

∂η (k)
= µT

i

dT (k)

dη (k)

∣∣∣∣
η(k)=0

νi = µT
i∆ (k)νi,∀i ∈ I. (40)

The derivatives of σ1 = 1 and σ2 = 1 are

∂σ1

∂η (k)
=
[
−1TK (k) 1T

]
∆ (k)

[
0

1
1Tγ1

γ1

]
= 0, (41)
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∂σ2

∂η (k)
=
[

1
1Tω1

ω1
T 0T

]
∆ (k)

[
1

K̂(k)

1Tγ1

γ1

]

=
K̂ (k)

1Tω1 · 1Tγ1

ω1
Tγ1 < 0. (42)

Thus, there exists a small positive value ϵ1 > 0 such that the
following equation holds if η (k) < ϵ1:

|σ1|= 1, |σ2|< 1. (43)

Because the eigenvalues are continuous functions of matrix
entries, there exists a small positive value ϵ2 > 0 such that the
following equation holds if η (k) < ϵ2:

|σi|< |σ2|< 1. (44)

With a small enough η (k) such that η (k) < min (ϵ1, ϵ2), the
eigenvalues of E [T (k)] satisfy

1 = |σ1|> |σ2|> |σ3|. . . ≥ |σ2N|. (45)

Following Reference [19], we define the consensus error as

e (k) =

[
λ (k)
ζ (k)

]
−
[

λ∗1
0

]
. (46)

The following equation holds since W (k) is a row stochas-
tic matrix:

T (k)

[
λ∗1
0

]
=

[
λ∗1
0

]
. (47)

Then, one can infer that

e (k + 1) =

[
λ (k + 1)
ζ (k + 1)

]
−
[

λ∗1
0

]
= T (k)

[
λ (k)
ζ (k)

]
− T (k)

[
λ∗1
0

]
= T (k) e (k) . (48)

Equation (48) implies that the evolution of e (k) can be
described by the same linear system as equation (22). Defining
a new vector e̊ (k) ∈ R4N2

as e̊ (k) = e (k)⊗ e (k), where ⊗
is the Kronecker product, we can obtain

e̊ (k + 1) = e (k + 1)⊗ e (k + 1)

= (T (k) e (k))⊗ (T (k) e (k))

= (T (k)⊗ T (k)) (e (k)⊗ e (k))

= (T (k)⊗ T (k)) e̊ (k)

, (49)

which implies that

E [ e̊ (k + 1)| e̊ (k)] = E [T (k)⊗ T (k)] e̊ (k) . (50)

Because the sequence {T (k)} is independent and identi-
cally distributed, the sequence {T (k)⊗ T (k)} is indepen-
dent and identically distributed. Then, equation (50) can be
rewritten as

E [ e̊ (k + 1)| e̊ (k)] = E [T ⊗ T ]
k
e̊ (0) . (51)

Lemma 2. Assuming that matrix A ∈ Rn×n has
α1, . . . , αn as its eigenvalues and matrix B ∈ Rm×m has
β1, . . . , βm as its eigenvalues, the eigenvalues of A⊗B are
αiβj (i = 1, . . . n, j = 1, . . . ,m) [44].

Lemma 2 implies that the eigenvalues of E [T ⊗ T ] satisfy

1 = |ς1|> |ς2|> |ς3|. . . ≥ |ς4N2 |, (52)

where ς1 is the product of eigenvalue 1 of the matrix T .
According to Reference [45], the corresponding right and left
eigenvectors corresponding to ς1 are

r1 = y1 ⊗ y1, l
T
1 = zT

1 ⊗ zT
1, (53)

where y1 and z1 are the right and left eigenvectors of T
corresponding to eigenvalue 1, respectively, which have the
following form:

y1 =

[
1
0

]
, zT

1 =
1

K̂ (k)

[
1TK −1T

]
. (54)

There exists a non-singular matrix Q such that

Q−1E [T ⊗ T ]Q =

[
1 0T

0 J

]
, (55)

where J is the Jordan block matrix corresponding to the
eigenvalues lying in the open unit disk. Thus, as k → ∞,

E [T ⊗ T ]
k
= Q

[
1 0T

0 Jk

]
Q−1 → r1l

T
1. (56)

According to equation (54),

y1z
T
1 =

1

K̂ (k)

[
1
0

] [
1TK −1T

]
=

1

K̂ (k)

[
1N×NK −1N×N
0N×N 0N×N

]
. (57)

Based on the initialization rule (16), one can infer that
1

K̂ (k)

[
11TK −11T

00T 00T

]
e (0)

=
1

K̂ (k)

[
11TK −11T

00T 00T

]([
λ (0)
ζ (0)

]
−
[

λ∗1
0

])
=

1

K̂ (k)

[
11TK −11T

00T 00T

] [
λ (0)
ζ (0)

]
− 1

K̂ (k)

[
11TK −11T

00T 00T

] [
λ∗1
0

]
=

1

K̂ (k)

[ (∑
i∈I Pi (0)−

∑
i∈I ζi (0)

)
1

0

]
− 1

K̂ (k)

[ (∑
i∈I P ∗

i −
∑

i∈I ζ∗i
)
1

0

]
=

[
0
0

]
. (58)

Thus,

E [ e̊ (k + 1)| e̊ (k)] → r1l
T
1 e̊ (0)

=

(
1

K̂ (k)

[
11TK −11T

00T 00T

]
⊗ 1

K̂ (k)

[
11TK −11T

00T 00T

])

×
(([

λ (0)
ζ (0)

]
−
[

λ∗1
0

])
⊗
([

λ (0)
ζ (0)

]
−
[

λ∗1
0

]))
=

(
1

K̂ (k)

[
11TK −11T

00T 00T

]([
λ (0)
ζ (0)

]
−
[

λ∗1
0

]))

⊗

(
1

K̂ (k)

[
11TK −11T

00T 00T

]([
λ (0)
ζ (0)

]
−
[

λ∗1
0

]))

=

[
0
0

]
⊗
[

0
0

]
, (59)
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implying that the expectation of the consensus error converges
to zero, i.e., system (22) achieves mean square consensus. ■

APPENDIX C
PROOF OF THEOREM 3

Lemma 3. For a discrete-time Markov jump linear system,
it achieves almost sure consensus if it achieves mean square
consensus [46].

Based on Theorem 2, the system we studied achieves
mean square consensus. Because the system is a discrete-time
Markov jump linear system, Lemma 3 implies that the system
achieves almost sure consensus. ■

APPENDIX D
PROOF OF OPTIMALITY

Since problem (7) is a convex optimization problem with
affine constraints, proving Theorem 4 is equivalent to prov-
ing that the stationary point [P ∗

i , λ
∗1,0] satisfies the KKT

conditions of problem (7).
We first prove that the equality constraint (7b) is satisfied at

the stationary point. Recall that by definition (14), the matrix
B (k) is a column stochastic matrix at each iteration k, i.e.,
the entries of each column of B (k) sum to 1. Thus, summing
up both sides of equation (18) for all agents yields∑

i∈I
ζi (k + 1) =

∑
i∈I

ζi (k) +
∑
i∈I

∆Pi (k). (60)

According to equations (12) and (19), the following equa-
tion holds: ∑

i∈I
∆Pi (k) = ζ (k + 1)− ζ (k) . (61)

Substituting equation (61) into equation (60) yields∑
i∈I

ζi (k + 1)− ζ (k + 1) =
∑
i∈I

ζi (k)− ζ (k) , (62)

which holds for every k. Since the initialization rule (16)
ensures that

∑
i∈I ζi (0)− ζ (0) = 0, one can infer that∑

i∈I
ζi (k)− ζ (k) = 0, (63)

implying that the global power mismatch equals zero as
the algorithm converges, i.e., the equality constraint (7b) is
satisfied. Since the satisfaction of constraint (7c) is guaranteed
by (10), the stationary point [P ∗

i , λ
∗1,0] is a feasible solution

to the primal problem (7).
The dual feasibility is proven by contradiction. Assuming

that λ∗ < 0, one can infer from equation (10) that Pi =
Pmax
i ,∀i ∈ IL and Pi = Pmin

i ,∀i ∈ IR ∪ IG. However,
equation (8) implies that

∑
i∈IR∪IG

Pmin
i <

∑
i∈IL

Pmax
i , and

thus, ζ ̸= 0, which is contradictory to the primal feasibility.
With the vector of KKT multipliers corresponding to the

upper and lower limits of the power at the stationary point

denoted by ϕ = [ϕ∗
1, . . . , ϕ

∗
N]

T and ξ = [ξ∗1 , . . . , ξ
∗
N]

T, the
complementary slackness and stationary conditions are

ϕ∗
i

(
Pi − Pmin

i

)
= 0, ∀i ∈ I,

ξ∗i (P
max
i − Pi) = 0, ∀i ∈ I,

−λ∗ + ϕ∗
i − ξ∗i = 0, ∀i ∈ IR,

C
′

i(P
∗
i )− λ∗ + ϕ∗

i − ξ∗i = 0, ∀i ∈ IG,

−U
′

i (P
∗
i ) + λ∗ + ϕ∗

i − ξ∗i = 0, ∀i ∈ IL,

(64)

which can be satisfied by a proper selection of ϕ and ξ. ■
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